Affiliation:
1. The Institute of Physical and Chemical Research (RIKEN), 2–1 Hirosawa, Wako-shi, Saitama 351–01, Japan
Abstract
A tight-binding model is formulated for the calculation of the electronic structure and the ground state energy of the quantum ladder under a magnetic field, where the magnetic flux at the nth plaquette is given by ϕn. First, the theory is applied to obtain the electronic spectra of the quantum ladder models with particular magnetic fluxes such as uniform magnetic fluxes, ϕn=0 and 1/2, and the staggered magnetic flux, ϕn= (−1)n+1ϕ0. From these, it is found that as the effect of electron hopping between two chains—the anisotropy parameter r=ty/tx—is increased, there are a metal-semimetal transition at r=0 and a semimetal–semiconductor transition at r=2 in the first case, and metal-semiconductor transitions at r=0 in the second and third cases. These transitions are thought of as a new category of metal-insulator transition due to the hopping anisotropy of the system. Second, using the spectrum, the ground state energy is calculated in terms of the parameter r. It is found that the ground state energy in the first case diverges as r becomes arbitrarily large, while that in the second and third cases can have the single or double well structure with respect to r, where the system is stable at some critical value of r=rc and the transition between the single and double well structures is associated with whether tx is less than a critical value of txc. The latter cases are very reminiscent of physics in polyacetylene studied by Su, Schrieffer and Heeger.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献