Affiliation:
1. Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
2. Ministry of Science and Technology, Baghdad, Iraq
Abstract
Formation energies of cadmium sulfide clusters are calculated with the help of density functional theory. The investigated structures include clusters that represent the CdS three main phases, wurtzite, zincblende and rock-salt. The investigation includes electronic, vibrational and thermal properties. CdS clusters are represented by wurtzoids, diamondoids and cuboids for the three phases, wurtzite, zincblende and rock-salt, respectively. The energy gap of the largest investigated molecules approaches that of bulk experimental 2.42 eV. The calculated longitudinal optical (LO) vibrational mode is 304.2 cm[Formula: see text] which is in good agreement with the experimental bulk value of 305 cm[Formula: see text]. To calculate Gibbs free energy, enthalpy and entropy of formation for the clusters, we redefined these quantities so that they represent the difference between the CdS formation energy and their constitutes Cd and S clusters energy. The calculated Gibbs free energy of formation, enthalpy and entropy of the investigated clusters approach that of bulk. Wurtzoids are more stable than diamondoids and cuboids with the release of more heat as deduced from their cluster Gibbs energy and enthalpy of formation. The entropy of clusters is dependent on the size of the cluster. The present method draws a relation between known solid state phases and small cluster calculations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献