Affiliation:
1. Department of Natural Science, Högskolan Skövde, S-541 28 Skövde, Sweden
2. Max Planck Institut für Festkörperforschung, D-705 06 Stuttgart, Germany
Abstract
We have studied the Cu -2p core level photoemission spectrum of a variety of cuprates, mainly focusing on the chemical shift and the shape of the leading peak. The spectra are calculated using the Anderson impurity model and we obtain a very good agreement with the experimental data. We find that the shape of the leading peak depends crucially on the structure of the Cu - O network. The main peak turns out to be quite narrow if the network consists of Cu - O - Cu bond angels of the order of 90°. On the other hand, if the Cu - O atoms are arranged with bond angles of approximately 180°, the main peak becomes substantially broader and contains a rather complicated structure. However, in some cases it is not sufficient only to consider the Cu - O network because interactions with other atoms are also important. In the model compounds Cu 2 O , CuO and NaCuO 2, where Cu is formally monovalent, divalent and trivalent, respectively, we find that the number of 3d electrons is rather similar. Nevertheless, the binding energy increases with the valence as expected from chemical intuition. The spectra exhibit a large variation in the strength of the d9-like satellite and in the width of the main line. We, furthermore, study the chemical shift of three inequivalent Cu atoms in YBa 2 Cu 3 O 6.5, and compare the results with the model compounds, which suggests that the different Cu atoms in YBa 2 Cu 3 O 6.5 have formal valences of approximately one, two and three. These findings are analyzed and related to the formal valence.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献