2D ISING MODEL WITH COMPETING INTERACTIONS AND ITS APPLICATION TO CLUSTERS AND ARRAYS OF π-RINGS, GRAPHENE AND ADIABATIC QUANTUM COMPUTING

Author:

O'HARE ANTHONY1,KUSMARTSEV F. V.1,KUGEL K. I.2

Affiliation:

1. Department of Physics, Loughborough University, Leicestershire, LE11 3TU, UK

2. Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya Str. 13, Moscow, 125412, Russia

Abstract

We study the two-dimensional Ising model with competing nearest-neighbour and diagonal interactions and investigate the phase diagram of this model. We show that the ground state at low temperatures is ordered either as stripes or as the Néel antiferromagnet. However, we also demonstrate that the energy of defects and dislocations in the lattice is close to the ground state of the system. Therefore, many locally stable (or metastable) states associated with local energy minima separated by energy barriers may appear forming a glass-like state. We discuss the results in connection with two physically different systems. First, we deal with planar clusters of loops including a Josephson π-junction (a π-rings). Each π-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments in the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. Second, we apply the model to the analysis of the structure of the newly discovered two-dimensional form of carbon, graphene. Carbon atoms in graphene form a planar honeycomb lattice. Actually, the graphene plane is not ideal but corrugated. The displacement of carbon atoms up and down from the plane can be also described in terms of Ising spins, the interaction of which determines the complicated shape of the corrugated graphene plane. The obtained results may be verified in experiments and are also applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constant.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3