Impact of higher-order chemical reaction with generalized Fourier and Fick law on a Maxwell nanofluid flow past a rotating cone with variable thermal conductivity

Author:

Ramzan Muhammad1ORCID,Shaheen Naila1,Ghazwani Hassan Ali S2,Nisar Kottakkaran Sooppy3,Saleel C Ahamed4

Affiliation:

1. Department of Computer Science, Bahria University, Islamabad 44000, Pakistan

2. Department of Mechanical Engineering, Faculty of Engineering, Jazan University 45124, Jazan, Kingdom of Saudia Arabia

3. Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser 11991, Prince Sattam Bin Abdulaziz University, Saudi Arabia

4. Department of Mechanical Engineering, College of Engineering, King Khalid University, Asir-Abha, 61421 Saudi Arabia

Abstract

This paper studies a chemical reactive Maxwell nanofluid flow in porous media with generalized Fourier and Fick laws in the presence of temperature-dependent thermal conductivity and robin conditions past a spinning cone. The characteristics of the fluid flow are examined using the Buongiorno nanofluid model. The equations that regulate the flow are highly nonlinear and are simplified using similarity transformations. Numerical solution is obtained by employing the bvp4c technique. The characteristics of various parameters on tangential and azimuthal velocities, heat, and mass transfers are depicted graphically. An opposing behavior on the tangential and azimuthal velocity fields is depicted in elevating the Deborah number. The solutal field upsurges on increasing the order of the reaction. The mass flux strengthens by augmenting the Schmidt number and solutal relaxation time. The validation of the proposed model in the limiting case is also given.

Funder

Deanship of Scientific Research at King Khalid University, Saudi Arabia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3