Optimizing luminescent properties of ZnO: Er3+ through temperature and dopant variation: XRD and emission spectroscopy studies

Author:

Yeh Min Yen1,Dong Zhen-Cheng1,Liao Ssu-Han1,Chang Shun Hsyung1ORCID

Affiliation:

1. Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan

Abstract

This study focuses on optimizing the synthesis conditions for the luminescent properties of ZnO:Er3[Formula: see text], a key step toward improving its applicability in optoelectronics. X-ray diffraction (XRD) patterns at [Formula: see text]C with Er3[Formula: see text] dopant concentrations (1, 3 and 5[Formula: see text]wt.%) show the preservation of the crystalline phase of ZnO, indicating that the dopants did not affect the structural integrity. Luminescence properties were observed in ZnO with 1[Formula: see text]wt.% erbium doping at 900–[Formula: see text]C, with the sample at [Formula: see text]C exhibiting the highest emission peak at 533[Formula: see text]nm. The optimal conditions for significant luminescence were identified at [Formula: see text]C, with 5[Formula: see text]wt.% Er3[Formula: see text] showing the most pronounced effect. The practical implications of the achievement of optimal luminescence in ZnO:Er3[Formula: see text] are profound for optoelectronics. These conditions are critical for efficient light-emitting devices, particularly in applications such as light-emitting diodes (LEDs) and lasers, where emission characteristics have a direct impact on performance. In addition, the enhanced luminescence holds great promise for sensors, especially in biomedical and environmental monitoring, as well as in quantum technologies. It contributes to the advancement of quantum sensors and quantum computing applications. This research provides a basis for tailoring the properties of ZnO:Er3[Formula: see text] for specific applications by identifying optimal luminescence conditions at different dopant concentrations. While the identification of optimal conditions has been successful, further research is essential to unravel the underlying mechanisms at the atomic and molecular levels. Overcoming these challenges and exploring additional applications will be critical to realizing the practical impact of these findings in various technological fields, as the study paves the way for advances in optoelectronics, sensing, and quantum information processing.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3