Thermodynamic analysis of electroosmosis regulated peristaltic motion of Fe3O4–Cu/H2O hybrid nanofluid

Author:

Abbasi F. M.1,Zahid U. M.1,Akbar Y.1ORCID,Saba 1,Hamida M. B. B.2345

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

2. College of Engineering, Chemical Engineering Department, Ha’il University, Ha’il City, Saudi Arabia

3. Research Unit of Ionized Backgrounds and Reagents Studies (UEMIR), Preparatory Institute for Engineering Studies of Monastir (IPEIM), University of Monastir, Monastir, Tunisia

4. College of Engineering, Department of Mechanical Engineering, Al Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

5. Higher School of Sciences and Technology of Hammam Sousse (ESSTHS), Physics Department, University of Sousse, 4011 Lamine Abassi Street, Sousse, Tunisia

Abstract

This study aims to investigate the thermodynamic analysis for electroosmotic flow of [Formula: see text]–[Formula: see text] hybrid nanofluid in the presence of peristaltic propulsion. Hybrid nanofluid is an aqueous solution of copper and iron oxide nanoparticles. Effects of electric field, Ohmic heating, magnetic field, viscous dissipation, heat sink/source and mixed convection are also considered. The Debye–Hückel and lubrication approach has been adopted to perform mathematical modeling. The resulting differential equations are numerically solved by employing the Shooting method. Analysis has been presented for irreversibility rate and heat transfer for the flow of hybrid nanoliquid. Results reveal that the addition of nanoparticles reduces the temperature and entropy generation of hybrid nanoliquid. Heat transfer rate enhances by improving Joule heating and electroosmotic parameters. An increase in Helmholtz–Smoluchowski velocity and Hartmann number decrease the velocity of fluid. Thermal performance of hybrid nanofluid ([Formula: see text]–[Formula: see text]) is more noticeable in comparison with conventional mono nanofluid ([Formula: see text]–[Formula: see text]) and base fluid ([Formula: see text]).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3