The role of dysprosium ions on the physical and optical properties of lithium-borosulfophosphate glasses

Author:

Bulus Ibrahim12,Dalhatu S. A.1,Hussin R.1,Wan Shamsuri W. N.1,Yamusa Y. A.1

Affiliation:

1. Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia

2. Department of Physics, School of Sciences, Kaduna State College of Education Gidan Waya, Kafanchan, Kaduna, Nigeria

Abstract

Achieving outstanding physical and optical properties of borosulfophosphate glasses via controlled doping of rare earth ions is the key issue in the fabrication of new and highly-efficient glass material for diverse optical applications. Thus, the effect of replacing P2O5 by Dy2O3 on the physical and optical properties of Dy[Formula: see text]-doped lithium-borosulfophosphate glasses with chemical composition of 15Li2O–30B2O3–15SO3–[Formula: see text]P2O5–[Formula: see text]Dy2O3 (where 0.0 mol.% [Formula: see text] mol.%) has been investigated. The glass samples were synthesized from high-purity raw materials via convectional melt-quenching technique and characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), density and UV–vis–NIR absorption measurements. The amorphous nature of the prepared glass samples was confirmed by XRD patterns whereas the EDX spectrum depicts elemental traces of O, C, B, S, P and Dy. The physical parameters such as density, refractive index, molar volume, polaron radius and field strength were found to vary nonlinearly with increasing Dy2O3 concentration. UV–vis–NIR absorption spectra revealed seven absorption bands with most dominant peak at 1269 nm (6H[Formula: see text]F[Formula: see text]H[Formula: see text]). From the optical absorption spectra, the optical bandgap and Urbach’s energy have been determined and are related with the structural changes occurring in these glasses with increase in Dy2O3 content. Meanwhile, the bonding parameters ([Formula: see text]) evaluated from the optical absorption spectra were found to be ionic in nature. The superior features exhibited by the current glasses nominate them as potential candidate for nonlinear optical applications.

Funder

Ministry of Higher Education, Malaysia

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3