Affiliation:
1. Govt. Arts College, Melur-625 106, Madurai, Tamil Nadu, India
Abstract
The binding energy of shallow hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots is calculated as a function of dot radius in the influence of magnetic field. The binding energy has been calculated following a variational procedure within the effective-mass approximation. Calculations are presented with constant effective-mass and position dependent effective masses. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. The results show that the impurity binding energy (i) increases as the dot radius decreases for the infinite case, (ii) reaches a peak value around 1R* as the dot radius decreases and then diminishes to a limiting value corresponding to the radius for which there are no bound states in the well for the infinite case, and (iii) increases with the magnetic field. Also it is found that (i) the use of constant effective mass (0.067 m0) is justified for dot sizes ≥ a* where a* is the effective Bohr radius which is about 100 Å for GaAs , in the estimation of ionization energy and (ii) the binding energy shows complicated behavior when the position dependent mass is included for the dot size ≤ a*. These results are compared with the available existing literatures.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献