Affiliation:
1. Department of Physics, University of North Dakota, Grand Forks, ND 53202-7129, USA
Abstract
A Cremona transformation X=f(x, y), Y=g(x, y) is a rational mapping (meaning that f and g are ratios of polynomials) with rational inverse x=F(X, Y), y=G(X, Y). Discrete dynamical systems defined by such transformations are well studied. They include symmetries of the Yang-Baxter equations and their generalizations. In this paper we comment on two types of dynamical systems based on Cremona transformations. The first is the P1 case of Bellon et al. which pertains to the inversion relation for the matrix of Boltzmann weights of the 4-state chiral Potts model. The resulting dynamical system decouples completely to one in a single variable. The sub case z=x corresponds to the symmetric Ashkin-Teller model. We solve this case explicitly giving orbits as closed formulas in the number n of iterations. The second type of system treated is an extension from the famous example due to McMillan of invariant curves of area preserving maps in two dimensions to the case of invariant curves and surfaces of three dimensional Cremona maps that preserve volume. The trace map of the renormalization of transmission through a Fibonacci chain, first introduced by Kohmoto, Kadanoff and Tang, is considered as an example of such a system.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics