Calcium conductance-dependent network synchronization is differentially modulated by firing frequency

Author:

Lu Meili1,Qin Yingmei2,Li Huiyan2,Che Yanqiu2,Han Chunxiao2ORCID,Wei Xile3

Affiliation:

1. School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, P. R. China

2. Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, P. R. China

3. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P. R. China

Abstract

Synchronous oscillations in certain frequencies of the sub-thalamic nucleus (STN) neurons are closely related to the physical symptoms of Parkinson’s disease (PD). Recent results have highlighted the importance of calcium channels in the synchronization properties and regulation of STN neurons. In this paper, a novel hybrid neuron model which can capture the electrophysiological signature of neurons with low or high density of calcium channels is used to explore the synchronization propensity and regulation by firing frequencies of neurons. Numerical simulations show that the synchronization propensity of networks consisting of the novel hybrid neurons is quite distinguishing in low and high calcium conductance modes, especially, the synchronization can be differentially modulated by network frequencies in the two modes. By analyzing the firing frequency and phase response curve of the individual neuron, we find that a single parameter of the hybrid neuron, which is a direct image of the calcium conductance, is crucial in determining the excitability and response properties of the neuron. Different phase response properties of single neurons in different calcium conductance modes lead to network synchronization discrepancies.

Funder

Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars (CN)

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3