The Microscopic Theory of Superfluidity and Superconductivity Driven by Single Particle and Pair Condensation of Attracting Bosons

Author:

Dzhumanov S.1

Affiliation:

1. Institute of Nuclear Physics, Uzbek Academy of Sciences, 702132, Tashkent, Uzbekistan

Abstract

A original microscopic theory of superfluidity and superconductivity driven by the single particle (SPC) and pair condensation (PC) of attracting bosons both in Fermi and in Bose systems is developed. This theory (as distinct from the existing theories) for Fermi systems contains two order parameters Δ F and Δ B characterizing the attracting fermion pairs and boson pairs, respectively. In such systems superconducting (SC) phase transition is accompanied, as a rule, by the formation of k-space composite bosons (e.g. Cooper pairs and bipolarons) with their subsequent transition to the superfluid (SF) state by attractive SPC and PC. A novel Fermi-liquid and SF Bose-liquid theories are elaborated for description this two-stage Fermi–Bose-liquid (FBL) scenario of SC (or SF) transition. The crossover from k- to real (r)-space pairing regime for BCS-like coupling constants γ F ≃ 0.7-0.9 and the irrelevance of r-space pairs to the superconductivity are shown. The developed SF Bose-liquid theory predicts the first-order phase transition SPC ↔ PC of attracting 3d-bosons with the kink-like behaviors of all SC (SF) parameters near [Formula: see text] in accordance with the observations in 4 He , 3 He and superconductors. It is argued that the coexistence of the order parameters Δ F and Δ B leads to the superconductivity by two FBL scenarios. One of these scenarios is realized in the so-called fermion (type I, II and III) superconductors (FSC) (where formation of k-space composite bosons and their condensation occur at the same temperature) and the other in the boson (type II and III) superconductors (BSC) (where BCS-like pairing take place in the normal state with manifesting of the second-order phase transition and opening of the pseudogap at T=T F > T c ). There the gapless superfluidity (superconductivity) is caused by the gapless excitation spectrum of bosons at [Formula: see text] and not by the presence of point or line nodes of the BCS-like gap Δ F assumed in some s-, p- and d-pairing models. The 3D- and 2D-insulator–metal–superconductor phase diagrams are presented. The necessary and sufficient microscopic criterions for superfluidity is formulated. The theory proposed are in close agreement with the observations in 4 He , 3 He , superconductors, nuclear and neutron star matter, cosmology, etc.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3