SILICON THIN FILMS PREPARED BY PECVD USING VHF POWER IN A CIRCULAR-PARALLEL-PLATE PLASMA REACTOR

Author:

WEN SHUTANG12,MIAO YU12,WANG YUNHUI1,ZHANG LIWEI1,LU JINGXIAO12,FENG XIAOLI2,GUO XUEJUN2,SHEN CHENHAI2,XU YANHUA2,LI BAOSHUN2

Affiliation:

1. School of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China

2. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China

Abstract

The deposition rate of μc-Si films was investigated for four excitation frequencies 30, 40, 60, 70 and 80 MHz with other deposition parameters fixed. Deposition rate increases with the increasing of excitation frequency, while Raman crystallinity behaves more complicated. With the optimization of deposition parameters, p-i-n solar cells at an initial efficiency of 5.41% were fabricated. With the increasing of plasma excitation frequency, the non-uniformity of these thin films increases. To better understand the cause of the non-uniformity of these films, a numerical simulation was carried out. The numerical results generally followed the experimental data. It turned out that the standing waves and the evanescent wave guide modes on the electrode surface played an important role. In order to achieve highly uniform thin films, a triode-electrode was employed together with a pulsed power source. We found that with a proper choice of pulse frequency and DC voltage applied to the mesh, non-uniformity is less than 8% for films deposited on 10×10 cm 2 substrates. Simulations were also applied to analyze the results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3