Nondestructive characterization of elastic modulus under different tensile stresses through laser ultrasound combined inversion technique

Author:

Van Nguyen Le12,Jeyaprakash N.3ORCID,Yang Che-Hua3

Affiliation:

1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Industrial Education, University of Technology and Education-The University of Danang, Danang City 50000, Vietnam

3. Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

Stainless steel (SS) is widely used in many fields including aeronautics, automobiles, marine and mechanical industries due to its outstanding feature such as good corrosion resistance and hardness. However, changes in material properties under stress, particularly changes in Young’s modulus, result in the formation of cracks, a reduction in load-bearing capacity, and fatigue damage. So, the structural integrity needs to be evaluated based on a precise measurement of mechanical properties. In this study, Stainless Steel 304 (SS-304) is used as the base material and various tensile stresses are applied ranging from 0[Formula: see text]MPa to 100[Formula: see text]MPa with increment of 10[Formula: see text]MPa in each step. Nondestructive Laser Ultrasound Technique (LUT) has been used to characterize the elastic modulus under various tensile stresses. An inverse program was developed based on the Particle Swarm Optimization (PSO) algorithms to determine material properties. Nonlinear Gauss fitting method was proposed and established the fitting equation and nonlinear curve for Young’s modulus and residual stress. The outcome of this research shows that when tensile stress is applied, the mechanical properties decrease by shifting the dispersion curve and also it is evident that the dispersion curves move toward the high-frequency-thickness while increasing the tensile stress. When the tensile stress was increased from 0[Formula: see text]MPa to 100[Formula: see text]MPa, the value of Young’s modulus decreased from 201.7[Formula: see text]GPa to 193.5[Formula: see text]GPa. Especially, the predominant changes were observed during 30–100[Formula: see text]MPa. This observation displays the bonding strength and binding energy between the atomics. Further, the proposed nonlinear Gauss fitting substantiated the experimental values and confirmed that the thickness accuracy is close to the inversion values, with an average difference of 4.32%. This research suggests a potential nondestructive method to determine the residual stress of a material by calculating the changes in the elastic modulus.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3