Eigentime identity of the weighted (m,n)-flower networks

Author:

Dai Changxi1,Dai Meifeng1ORCID,Ju Tingting1,Song Xiangmei2,Sun Yu1,Su Weiyi3

Affiliation:

1. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, P. R. China

2. School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

3. Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China

Abstract

The eigentime identity for random walks on the weighted networks is the expected time for a walker going from a node to another node. Eigentime identity can be studied by the sum of reciprocals of all nonzero Laplacian eigenvalues on the weighted networks. In this paper, we study the weighted [Formula: see text]-flower networks with the weight factor [Formula: see text]. We divide the set of the nonzero Laplacian eigenvalues into three subsets according to the obtained characteristic polynomial. Then we obtain the analytic expression of the eigentime identity [Formula: see text] of the weighted [Formula: see text]-flower networks by using the characteristic polynomial of Laplacian and recurrent structure of Markov spectrum. We take [Formula: see text], [Formula: see text] as example, and show that the leading term of the eigentime identity on the weighted [Formula: see text]-flower networks obey superlinearly, linearly with the network size.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The trapping problem on horizontal partitioned level-3 sierpinski gasket networks;Physica Scripta;2023-03-10

2. Eccentric Fermat distance sum on a class of substitution networks;International Journal of Modern Physics B;2022-12-03

3. Spectral analysis of weighted neighborhood networks;Discrete Mathematics, Algorithms and Applications;2022-09-28

4. Synchronizability analysis of three kinds of dynamical weighted fractal networks;International Journal of Modern Physics B;2021-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3