Affiliation:
1. College of Mechanical Engineering, Beijing University of Technology, Beijing 100022, P. R. China
Abstract
The aim of this survey paper is to illustrate the perspectives on the theories of the single- and multi-pulse global bifurcations and chaotic dynamics of high-dimensional nonlinear systems and applications to several engineering problems in the past two decades. Two main methods for studying the Shilnikov type multi-pulse homoclinic and heteroclinic orbits in high-dimensional nonlinear systems, which are the energy-phase method and generalized Melnikov method, are briefly demonstrated in the theoretical frame. In addition, the theory of normal form and an improved adjoint operator method for high-dimensional nonlinear systems is also applied to describe a reducing procedure to high-dimensional nonlinear systems. The aforementioned methods are utilized to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of the cantilever beam subjected to a harmonic axial excitation and two transverse excitations at the free end. How to employ these methods to analyze the Shilnikov type multi-pulse homoclinic and heteroclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications is demonstrated through this example.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献