IMPROVED PERFORMANCE OF THE HOPFIELD AND LITTLE NEURAL NETWORK MODELS WITH TIME DELAYED DYNAMICS

Author:

MAITI PRABAL K1,DASGUPTA PRABIR K1,CHAKRABARTI BIKAS K1

Affiliation:

1. Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta-700064, India

Abstract

We report the results of simulation of neural network models with the synaptic connections constructed using the Hebb’s rule and the dynamics determined by the internal field, which has a weighted contribution from the time delayed signals. We consider both the asynchronous (or Glauber; Hopfield) and synchronous (Little) dynamics. Our numerical results and the finite size variation study (for sizes N within the range 250 ≤N≤4000) support the previous indication [Sen and Chakrabarti, Phys. Lett.A162, 327 (1992)] of improved performance in the recall and overlap properties in the thermodynamic limit. It is identified that the time delayed term in the dynamics allows the network to come out of the spurious valleys in the “energy landscape” (defined without the delay term; Hopfield model). In an approximate analytical study of such models in the extreme dilution limit, the role of the time delayed term to suppress the (spin glass-like) noise is also indicated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3