First-principles calculations of electronic structures and ferromagnetism of Fe3Si(001)//MgO(001) films

Author:

Xie Jing12,Xie Quan1

Affiliation:

1. Department of Big Data and Information Engineering, Guizhou University, Guiyang 550025, P. R. China

2. Department of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, P. R. China

Abstract

The first-principles calculations based on density functional theory (DFT) were carried out in investigating electronic structures and ferromagnetism of Fe3Si films epitaxial on MgO(001). Firstly, the various geometric structures of Fe3Si(001)//MgO(001) constructed near lattice constant c = 3.995 Å were optimized to gain the most steady equilibrium state at c = 3.980 Å. Then, the calculated cohesive energy and negative heat of formation indicate that Fe3Si(001)//MgO(001) formed in this manner obtain high structural stability. The calculated results of spin-polarized energy band structures and density of states show that Fe3Si(001)//MgO(001) exhibit the metallic feature whose bonding orbitals are constituted by covalent bond and metallic bond. Two peaks located in both the sides of the Fermi level and the total density of states (TDOS) in this energy range are all due to the Fe 3d states, which implies that the pseudo energy gap exists in the Fermi level and covalent electron orbit hybridization takes place. Ferromagnetism of Fe3Si(001)//MgO(001) are determined by the 3d states of Fe atoms. There are two occupied sites for Fe atoms with different local magnetic moments, which is 1.34 [Formula: see text]/atom for Fe[A, C] atoms and a value of 2.68 [Formula: see text]/atom for Fe[B] atoms, likewise indicating Fe3Si films epitaxial on MgO(001) are ferromagnetic.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3