INITIATION AND PROPAGATION BEHAVIOR OF A FATIGUE CRACK OF ALLOY 718

Author:

KAWAGOISHI NORIO1,GOTO MASAHIRO2,WANG XISHU3,WANG QINGYUAN4

Affiliation:

1. Department of Mechanical Engineering, Kagoshima University, Kagoshima, 890-0065, Japan

2. Department of Mechanical Engineering, Oita University, Oita, 870-1192, Japan

3. Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China

4. Department of Engineering Mechanics, Sichuan University, Chengdu, 610065, China

Abstract

Rotating bending fatigue tests were carried out at room temperature and 500°C for alloy 718 with nearly the same static strength but different precipitated particles, i.e. a peak aged condition (720°C-10h) and a double aged one (720°C-8h, 620°C-8h), in order to investigate the effect of precipitated particles on crack initiation and propagation behavior. Fatigue strength was higher in the double aged material than in the peak one at both temperatures. The main reason for high fatigue strength of the double aged material was that the propagation of a small crack with a few grain sizes was suppressed by the carbide particles precipitated in a grain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Status of Precipitation Hardened Nickel Base Alloys Including 718 for Oilfield Applications;8th International Symposium on Superalloy 718 and Derivatives;2014-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3