CRITICAL EXPONENTS OF THE TRANSPORT PROPERTIES AT THE B2⇔IC⇔C(R) TRANSITIONS IN Ti-Ni-Me SHAPE MEMORY ALLOYS

Author:

KOLOMYTSEV V.1,NEVDACHA V.2,BATAILLARD L.3,GOTTHARDT R.3

Affiliation:

1. Institute of Metal Physics, National Academy of Sciences of Ukraine, 36, Vernadskogo St., 252142 Kiev, Ukraine

2. Institute of Magnetism, National Academy of Sciences of Ukraine, 36 b, Vernadskogo St., 252142 Kiev, Ukraine

3. Ecole Polytechnique Federale de Lausanna, 1015 Lausanna, Switzerland

Abstract

Critical behaviour of the physical properties at the B2⇔IC ⇔C(R) phase transitions in TiNi-based shape memory alloys has been analyzed in the frame of the charge density wave (CDW) model. Variation of total resistance at the Peierls-type B2⇔IC ⇔C(R) transition in TiNiMe (Me=Cr, Fe, Al, Ge) alloys has been found to be a sum of the β-phase normal contribution, fluctuating CDW resistance ρ f (T) in the incommensurate state and resistance change due to the energy gap formation ρc(T) in the commensurate state. The fitting parameters such as the energy gap at saturation Δ(0) and the number of electrons involved in the process of the CDW's formation ψ(0) have been determined as a function of the alloy chemical composition and thermal treatment at moderate temperature. The critical resistive fluctuations in the incommensurate phase follow a power law dρ f /dt*~t*m with critical exponent m=-1. In the frame of the CDW model this means that the process of electron scattering from periodic distortion is strongly limited to a definite plane of the crystal and system is two-dimensional. The change of ρ c with temperature is controlled by the activation energy law corresponding to electron single excitations through the gap Δ(T), with a varying ψ(T) effective number of the electrons involved in the process. The total enthalpy measured during cooling is compared with the heat calculated for the energy gap opening at the Fermi level during the IC⇒C(R) transition in the frame of the Shottky anomaly approximation. Both values are of the same order. When hydrostatic pressure is applied to the material, a small drop in the conductivity is observed around P~2 GPa and interpreted as CDW pinning by commensurability locking at a temperature higher than the transition temperature at normal pressure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3