Design and analysis of a planar and multilayer metamaterial with the dual-functions of an ultra-broadband and high absorptivity absorber and a multi-wavelength resonator

Author:

Du Yong1,Wang Chih-Hsuang2,Ke Pei-Xiu2,Yang Cheng-Fu23ORCID,Lin Jing-Jenn4

Affiliation:

1. School of Ocean Information Engineering, Jimei University, Xiamen 361021, P. R. China

2. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

3. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

4. Department of Applied Materials and Optoelectronic Engineering, Nantou County 545, National Chi Nan University, Taiwan

Abstract

This absorber exhibits a hierarchical structure, featuring layers of ZnO, Zr, yttria-stabilized zirconia (YSZ), Zr, YSZ, Al, YSZ and Al from top to bottom. Simulation analyses were conducted using COMSOL Multiphysics® simulation software (version 6.1). The primary innovation of this multilayer metamaterial lies in its entirely planar configuration, enabling switchable functionality: one ultra-broadband with high absorptivity (facilitated by the ZnO layer) and three narrowband absorption peaks (achieved through the Al layer). The simulation results clearly demonstrate that when light was incident from the ZnO direction onto this designed structure, the investigated planar and multi-functional absorber exhibited excellent absorber characteristics. Over an ultra-wide broadband range from 395 to 2070[Formula: see text]nm, the average absorptivity reached an impressive 95.03%. When light was incident from the Al direction onto the investigated planar and dual-functional absorber, three narrowband absorption peaks were observed at wavelengths 355, 550 and 1200[Formula: see text]nm. The second innovation highlights the effectiveness of ZnO as an anti-reflection layer, elevating the absorptivity of the ultra-broadband absorber. The third innovation establishes that Al is the optimal metal choice. It is worth noting that while using no Al layer or substituting Al with other metals did not diminish the absorptivity of the ultra-broadband absorber, alternative metals might adversely affect the absorptivity of the multi-wavelength absorber.

Funder

Summit-Tech Resource Corp.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3