Density functional theory study of adsorption and diffusion of potassium atoms on zigzag graphene nanoribbons with different terminal groups

Author:

Yang Junwei1ORCID,Zhao Hua1,Ke Lei1,Liu Xing2,Cao Shengbin34

Affiliation:

1. School of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, P. R. China

2. Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, P. R. China

3. School of Materials Science, Shanghai Dianji University, Shanghai 201306, P. R. China

4. Key Laboratory of Silk Engineering of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China

Abstract

Despite the extensive use of graphene-based materials in K-ion batteries, the effects of various edge morphologies of graphene on K atom adsorption and diffusion are unclear. In this study, the effects of K atom adsorption and diffusion on zigzag graphene nanoribbons (ZGNRs) with hydrogen (−H), ketone (=O), hydroxyl (−OH), and carboxyl (−COOH) terminal groups were investigated by density functional theory calculations. ZGNRs terminating with −H, =O and −COOH promote K atom adsorption, whereas those terminating with −OH suppress it. The −H, =O, −OH and −COOH terminations have a negligible effect on K atom diffusion in the inner region of ZGNRs. In the edge region, the diffusion barriers are nearly unchanged for −H and −OH terminations; however, they are increased for =O and −COOH terminations in the edge region compared to those in the inner region. All the terminal groups hinder K atom diffusion from the edge region toward the inner region. Our results suggest that −H termination enhances K atom adsorption and has a negligible effect on the diffusion barrier of K atom in the edge region. Therefore, the ZGNR with −H termination could be a promising candidate for K-ion batteries.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Open Project of Key Laboratory of Silk Engineering of Jiangsu Province

Academic Discipline Project of Shanghai Dianji University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3