Affiliation:
1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, P. R. China
Abstract
The prediction of heat transfer for blunt bodies in hypersonic flows remains a great challenge. In particular, the uncertainties are larger in the leeside due to the complexity of the wake flow. Generally, the heat transfer is over-predicted using the Reynolds-averaged Navier–Stokes (RANS) models. In this paper, the improved delayed detached eddy simulation (IDDES) method is used to simulate the Mach 6 flow around a scaled spherical capsule model. In addition, a low dissipative WENO scheme is used for inviscid fluxes and dual-time stepping method is applied for time advancement. Results are compared to experimental data for mean and instantaneous heat transfer in the leeside of the aftbody. It is shown that the integrated error is 75.49% for RANS while 35.69% for IDDES method. Moreover, the multi-scale structures in the separation region are also resolved well by the IDDES method.
Funder
Feng Lei Youth Innovation Fund of CARDC
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献