SPECTRAL FUNCTION OF A d-p HUBBARD MODEL

Author:

CALEGARI E. J.1,MAGALHAES S. G.1

Affiliation:

1. Laboratório de Mecânica Estatística e Teoria da Matéria Condensada, Departamento de Física Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil

Abstract

This work investigates a d-p Hubbard model by the n-pole approximation in the hole-doped regime. In particular, the spectral function A(ω, k) is analyzed varying the filling, the local Coulomb interaction and the d-p hybridization. It should be remarked that the original n-pole approximation (Phys. Rev.184, 451 1969) has been improved in order to include adequately the k-dependence of the important correlation function 〈Sj·Si〉 present in the poles of the Green's functions. It has been verified that the topology of the Fermi surface (defined by A(ω = 0, k)) is deeply affected by the doping, the strength of the Coulomb interaction and also by the hybridization. Particularly, in the underdoped regime, the spectral function A(ω = 0, k) presents very low intensity close to the antinodal points (0, ±π) and (±π, 0). Such a behavior produces an anomalous Fermi surface (pockets) with pseudogaps in the region of the antinodal points. On the other hand, if the d-p hybridization is enhanced sufficiently, such pseudogaps vanish. It is precisely the correlation function 〈Sj·Si〉, present in the poles of the Green's functions, plays an important role in the underdoped situation. In fact, antiferromagnetic correlations coming from 〈Sj·Si〉 strongly modify the quasiparticle band structure. This is the ultimate source of anomalies in the Fermi surface in the present approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3