Molecular dynamics simulation of diffusion for Ni–Zr interface

Author:

Ouyang Yifang12,Wu Jizheng12,Wen Jiangxia12,Chen Hongmei12,Zhou Yulu12,Tao Xiaoma12ORCID,Du Yong3

Affiliation:

1. Ministry-Province Jointly-Constructed Cultivation Base for State Key, Laboratory of Processing for Nonferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region, Nanning 530004, P. R. China

2. School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China

3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China

Abstract

The molecular dynamics simulation has been performed to study the effects of temperature on interdiffusion of Ni–Zr system. The simulated results indicate that the thickness of Ni/Zr diffusion layer increased with increasing diffusion time, and interdiffusion results in disordered or amorphization in the diffusion zone. During the diffusion process, Ni atoms diffuse crossing the interface more easily and deeply into Zr side than Zr atoms into Ni side. The activation energies of Ni and Zr are 1.25 and 1.28 eV for Ni(100)//Zr(0001) interface, 1.33 and 1.42 eV for Ni(110)//Zr(0001) interface at the temperature range of 950–1100 K, respectively. The microscopic diffusion mechanisms for Ni atoms in Zr lattice have been studied, and the results show that the most possible diffusion mechanism is the interstitial hopping mechanism, while for Zr diffusing in Ni, the vacancy diffusion mechanism is favored. The interdiffusion for case of Ni(110)//Zr(0001) interface is more easy than that of Ni(100)//Zr(0001) interface due to the lower surface energy for the former. In the diffusion zone of Ni–Zr, some typical clusters have been identified, which are similar to those extracted from the Ni–Zr intermetallic compounds, and which are generally consistent with the experimental observations in diffusion couples.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3