ZnS nanowires growth on two different types of substrate using simple thermal evaporation method

Author:

Abadllah B.1,Kakhia M.1,Obaide A.1,Zetoun W.1

Affiliation:

1. Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria

Abstract

ZnS nanowires films were grown on two different substrates silicon and glass, with PbS dopant at 5 wt.%, using thermal evaporation method. The silicon is single crystal (only Si), while the glass is as amorphous substrate (mainly SiO2). In the used substrates, the morphology was confirmed by Atomic Force Microscopy (AFM) as well as Scanning Electron Microscopy (SEM) images (cross-section and surface). High Resolution Transmission Electron Microscopy (HRTEM) has been used to confirm the ZnO nanowires for doped films (PbS:ZnS) in both silicon and glass substrates, with diameter less than 50 nm and the thickness was varied from 2000 nm to 3000 nm. The undoped film has dense structure and is thin with thickness of 200 nm. The growth of nanowires is not affected by the two substrate types (silicon and glass). The compositions of chemical films have been verified by energy dispersive X-ray spectroscopy (EDX), and it confirms that ZnS is the main compound. X-ray Diffraction (XRD) investigated the crystallographic properties with wurtzite structure. Optical properties (transparency and bandgap) were deduced from UltraViolet Visible (UV-Vis) spectra of ZnS films (PbS 0 and 5 wt.%) deposited on glass substrate. Raman, Photoluminescence (PL) and Fourier transform infrared (FTIR) techniques confirm ZnS composition and its nonstructural growth. Finally, a good agreement between the XRD, FTIR and HRTEM analyses was found.

Funder

Atomic Energy Commission of Syria

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3