DIFFUSION IN THE FRENKEL–KONTOROVA MODEL WITH ANHARMONIC INTERATOMIC INTERACTIONS

Author:

BRAUN OLEG M.1,ZELENSKAYA IRINA I.1,KIVSHAR YURI S.2

Affiliation:

1. Institute of Physics, Ukrainian Academy of Sciences, 46 Science Avenue, UA-252022 Kiev, Ukraine

2. Optical Sciences Centre, Australian National University, ACT 0200 Canberra, Australia

Abstract

Low-temperature diffusion and transport properties of the generalized Frenkel–Kontorova model are investigated analytically in the framework of a phenomenological approach which treats a system of strongly interacting atoms as a system of weaklyinteracting quasiparticles (kinks). The model takes into account realistic (anharmonic) interaction of particles subjected into a periodic substrate potential, and such a generalization leads to a series of novel effects which we expect are related to the experimentally-observed phenomena in several quasi-one-dimensional systems. Analysing the concentration dependences in the framework of the kink phenomenology, we use the renormalization procedure when the atomic structure with a complex unit cell is treated as (more simple) periodic structure of kinks. Using phenomenology of the ideal kink gas, the low-temperature states of the chain are described as those consisting of "residual" kinks supplemented by thermally-excited kinks. This approach allows us to describe the ground states of the chain as a hierarchy of "melted" kink lattices. Dynamical and diffusion properties of the system are then described in terms of the kink dynamics and kink diffusion. The motion equation for a single kink is reduced to a Langevin-type equation which is investigated with the help of the Kramers theory. Susceptibility, conductivity, self-diffusion and chemical diffusion coefficients of the chain are calculated as functions of the kink diffusion coefficient. In this way, we qualitatively analyze, for the first time to our knowledge, dependence of the different diffusion coefficients on the concentration of atoms in the chain. The results are applied to describe peculiarities in conductivity and diffusion coefficients of quasi-one-dimensional systems, in particular, superionic conductors and anisotropic layers of atoms adsorbed on crystal surfaces which were earlier investigated experimentally.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3