GGA + U and mBJ + U study of the optoelectronic, magnetic and thermoelectric properties of the SmAlO3 compound with spin–orbit coupling

Author:

Chettri Sandeep1,Rai D. P.2,Shankar A.1,Khenata R.3,Ghimire M. P.4,Thapa R. K.1,Bin Omran S.5

Affiliation:

1. Department of Physics, Mizoram University, Aizawl 796009, Mizoram, India

2. Department of Physics, Pachhunga University College, Mizoram University, Aizawl 796001, India

3. Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique, (LPQ3M) Université de Mascara, Mascara 29000, Algeria

4. Condensed Matter Physics Research Center, Butwal-13, Rupandehi, Lumbini, Nepal

5. Department of Physics and Astronomy, College of Science, King Saud University P. O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

The electronic, thermoelectric, optical, and magnetic properties of the samarium aluminate (SmAlO3) compound is studied using the spin-polarized full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange and correlation potential is treated with the generalized gradient approximation (GGA) and the Coulomb repulsion ([Formula: see text] Ry) has been calculated theoretically and was used for the GGA[Formula: see text] based approximated electronic structures. Additionally, the modified Becke–Johnson (mBJ) potential was also utilized along with the GGA[Formula: see text] approach for the calculation of the band gap. On the other hand, the optical properties were analyzed with the mBJ[Formula: see text] results and the thermoelectric properties were explained on the basis of the electronic structures and density of states (DOS) with a thermoelectric efficiency of 0.66 at 300 K. The minimum reflectivity at 1.13 eV (which was equal to 1.097 [Formula: see text]m) was found to be in agreement with the experimental results. Further refinements in the electronic structures were obtained by adding the spin–orbit coupling (SOC) interactions to the GGA[Formula: see text] approach, which was then combined with the mBJ approximations. Hence, a conclusion using the combined mBJ[Formula: see text]SOC study indicates that the SmAlO3 compound is a potential candidate for both thermoelectric as well as magnetic devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3