Entropy and heat capacity in the generalized Bose–Einstein condensation theory of superconductors
-
Published:2019-10-20
Issue:26
Volume:33
Page:1950311
-
ISSN:0217-9792
-
Container-title:International Journal of Modern Physics B
-
language:en
-
Short-container-title:Int. J. Mod. Phys. B
Author:
García L. A.1,
de Llano M.1
Affiliation:
1. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico
Abstract
The new generalized Bose–Einstein condensation (GBEC) quantum-statistical theory starts from a noninteracting ternary boson-fermion (BF) gas of two-hole Cooper pairs (2hCPs) along with the usual two-electron Cooper pairs (2eCPs) plus unpaired electrons. Here we obtain the entropy and heat capacity and confirm once again that GBEC contains as a special case the Bardeen–Cooper–Schrieffer (BCS) theory. The energy gap is first calculated and compared with that of BCS theory for different values of a new dimensionless coupling parameter n/n[Formula: see text] where n is the total electron number density and n[Formula: see text] that of unpaired electrons at zero absolute temperature. Then, from the entropy, the heat capacity is calculated. Results compare well with elemental-superconductor data suggesting that 2hCPs are indispensable to describe superconductors (SCs).
Funder
CONACyT
CONACyT-Ciencia Básica
PAPIITDGAPA-UNAM
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献