An exact analysis of radiation absorption and Dufour effect on MHD convective flow of Cu-water nanofluid with heat generation and chemical reaction

Author:

Bordoloi Rajdeep1ORCID,Gohain Dipunja1,Ahmed Nazibuddin1,Chamkha Ali J.2

Affiliation:

1. Department of Mathematics, Gauhati University, Guwahati-781014, India

2. Faculty of Engineering, Kuwait College of Science & Technology, Doha District, 35004 Kuwait

Abstract

The combined effects of diffusion-thermo and radiative absorption on free convective hydromagnetic heat-generating chemically reactive flow of Cu-water nanofluid past an instantaneously accelerated unlimited vertical plate nested in a porous medium are investigated. A comparative analysis is executed for both isothermal and ramped conditions. The set of transformed domain equations has been obtained using a closed form of the Laplace transform method with the help of the Heaviside step function. Graphical and tabular explanations are provided for the physical characteristics of several flow parameters affecting the problem. Graphs are generated using MATLAB computing software. Findings of the problem manifest that the diffusion-thermo parameter and the radiation absorption parameter intensify the velocity and fluid temperature in the entire fluid area. This augmentation is most prominent for copper nanoparticles. Concentration, temperature, and velocity profiles in the case of ramped conditions are less than in isothermal conditions. Furthermore, the ramped parameter amplifies the heat transfer rate while reversing the mass transfer rate. It is also established that the volume concentration of nanoparticles enhances the heat transfer rate. The present study is of great interest in numerous fields of industry and machine-building applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3