EFFECT OF Ba SUBSTITUTION ON ELECTRICAL TRANSPORT AND MAGNETORESISTANCE OF La1.2Sr1.8Mn2O7

Author:

REDDY Y. S.1,KISTAIAH P.1,VISHNUVARDHAN REDDY C.1

Affiliation:

1. Department of Physics, Osmania University, Hyderabad, 500 007, India

Abstract

Polycrystalline samples of double layered (DL) manganite system La 1.2( Sr 1-x Ba x)1.8 Mn 2 O 7(0.0≤×≤0.4) were prepared by the sol-gel method. The anisotropic lattice expansion is observed with the substitution of Ba 2+ into Sr 2+ sites. The electrical resistivity and magnetoresistance (MR) measurements were carried out over the temperature range 4.2 K–300 K. The substitution of Ba results in the suppression of T IM , insulator-to-metal transition temperature. A low temperature upturn of resistivity is seen in all the samples of the system, which is attributed to the spin-glass-like transition. The conduction mechanism above T IM is explained by Mott variable range hopping (VRH) mechanism. The variation of MR with temperature and applied magnetic field is discussed. From the temperature dependent MR curves, it is observed that the large MR values are present over a wide temperature range and the maximum MR values occur at [Formula: see text]. The x=0.4 sample exhibits ~31% of MR with the application of a mere 0.4 T field at 5 K, which accounts for ~35% enhancement of MR of parent compound (~23% of MR% at 0.4 T at 5 K). The MR — H data is fitted to the power law ρ = ρ0-αHn, and it is found that the low temperature MR varies as square root of the applied magnetic field, as expected in conventional metals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3