Adsorption properties of boroxol ring doped zigzag boron nitride nanotube toward NO molecule using DFT

Author:

Zahedi Ehsan1,Babaie Mahsa2,Bahmanpour Hooman3

Affiliation:

1. Physical Chemistry Department, Shahrood Branch, Islamic Azad University, Shahrood, Iran

2. Chemical Engineering Department, Shahrood Branch, Islamic Azad University, Shahrood, Iran

3. Department of Environmental Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

Abstract

In previous researches it is demonstrated that reactivity and sensitivity of boron nitride nanotubes (BNNTs) toward gas molecules can be modified by impurity. In this work, oxygen defect for three nitrogen sites was used to study the adsorption of NO molecule through the surface of boroxol ring of oxygen doped BNNT (7,0) with different adsorption patterns, including side-on and end-on. All calculations are performed using the DFT-B3LYP/6-31G[Formula: see text] level of theory, and their electronic energies are corrected by gCP and D3 correction terms. High binding energies indicate that NO molecule undergoes chemical adsorption with large charge transfer from the tube which can significantly change electronic properties of the tube. Density of state (DOS) and partial DOS (PDOS) analyses revealed that adsorption of NO molecule on the boroxol ring position is covalent in nature with significant effect on the electronic properties of tube. The Laplacian of electron density, Lagrangian kinetic energy density, Hamiltonian kinetic energy density and potential energy density at bond critical points between the tube and NO indicate that the interaction between the tube and NO molecule is covalent in nature. Topological analysis of the electron localization function shows that electrons in the new formed bonds are approximately localized, meaning that the nature of adsorption process is chemical covalent. The studied nanotube is a suitable candidate to filter and eliminate NO gas molecule.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3