A STUDY ON IMPACT DEFORMATION AND TRANSFORMATION BEHAVIOR OF TRIP STEEL BY FINITE ELEMENT SIMULATION AND EXPERIMENT

Author:

IWAMOTO TAKESHI1,SAWA TOSHIYUKI1,CHERKAOUI MOHAMMED2

Affiliation:

1. Department of Mechanical Systems Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan

2. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive N. W. Atlanta, Atlanta, GA, 30332-0405, USA

Abstract

Due to strain-induced martensitic transformation (SIMT), the strength, ductility and toughness of TRIP steel are enhanced. The impact deformation behavior of TRIP steel is very important because it is investigated to apply it for the shock absorption member in automobile industries. However, its behavior is still unclear since it is quite difficult to capture the transformation behavior inside the materials. There are some opinions that the deformation characteristics are not mainly depending on the martensitic transformation due to heat generation by plastic work. Here, the impact compressive deformation behavior of TRIP steel is experimentally studied by Split Hopkinson Pressure Bar (SHPB) method at room temperature. In order to catch SIMT behavior during impact deformation, volume resistivity is measured and a transient temperature is captured by using a quite thin thermocouple. Then, a finite element simulation with the constitutive model for TRIP steel is performed. The finite element equation can be derived from the rate form of principle of virtual work based on the implicit time integration scheme. Finally, the results between the computation and experiment are compared to confirm the validity of computational model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3