Density functional theory (DFT) calculations of structural, elastic, and thermal properties of Zn3P2 compound

Author:

Hammad T. R.1ORCID

Affiliation:

1. Department of Physics, Faculty of Sciences, Helwan University, Helwan-Cairo, Egypt

Abstract

In this paper, theoretical investigations of structural, elastic and thermal properties of Zn3P2 material were done using Quantum ESPRESSO code based on density functional theory. The generalized gradient approximation (GGA) exchange correlation-functional helped to model the atomic interaction. First, the structural optimization procedure was carried out, and hence, the optimized structural parameters were utilized to obtain six independent elastic constants [Formula: see text], and [Formula: see text] for the Zn3P2 tetragonal structure. Accordingly, these elastic constants were used to determine the elastic moduli such as the Bulk modulus, Young’s modulus, and shear modulus, as well as other mechanical parameters such as Pugh’s ratio, Poisson’s ratio, anisotropic ratio, sound velocities and Debye temperature. Calculations of thermodynamic properties such as vibrational energies, vibrational free energies, and fixed volume heat capacities, were performed within the implementation of the Thermo_pw code. Elastic calculations confirmed that this compound is characterized by mechanical stability at zero pressure and 0K temperature, ionic bonding, a high degree of anisotropy, and typical ductility. An observable increase in Debye vibrational energies, entropies and constant volume heat capacities of this compound with increasing temperature was detected throughout the thermodynamic calculations, unlike vibrational free energy which revealed a pronounced decrease as temperature increased.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3