Comparative analysis of numerical and newly constructed soliton solutions of stochastic Fisher-type equations in a sufficiently long habitat

Author:

Baber Muhammad Z.1,Seadway Aly R.2,Iqbal Muhammad S.3,Ahmed Nauman1,Yasin Muhammad W.14,Ahmed Muhammad O.1

Affiliation:

1. Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

2. Mathematics Department, Faculty of science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

3. Department of Humanities & Basic Science, Military College of Signals, NUST, Islamabad, Pakistan

4. Department of Mathematics, University of Narowal, Narowal, Pakistan

Abstract

This paper is a key contribution with respect to the applications of solitary wave solutions to the unique solution in the presence of the auxiliary data. Hence, this study provides an insight for the unique selection of solitons for the physical problems. Additionally, the novel numerical scheme is developed to compare the result. Further, this paper deals with the stochastic Fisher-type equation numerically and analytically with a time noise process. The nonstandard finite difference scheme of stochastic Fisher-type equation is proposed. The stability analysis and consistency of this proposed scheme are constructed with the help of Von Neumann analysis and Itô integral. This model is applicable in the wave proliferation of a viral mutant in an infinitely long habitat. Additionally, for the sake of exact solutions, we used the Riccati equation mapping method. The solutions are constructed in the form of hyperbolic, trigonometric and rational forms with the help of Mathematica 11.1. Lastly, the graphical comparisons of numerical solutions with exact wave solution with the help of Neumann boundary conditions are constructed successfully in the form of 3D and line graphs by using different values of parameters.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3