Affiliation:
1. Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
Abstract
The equation for the electron Green's function of the fermionic Hubbard model, derived using the strong coupling diagram technique, is solved self-consistently for the near-neighbor form of the kinetic energy and for half-filling. In this case the Mott transition occurs at the Hubbard repulsion Uc ≈ 6.96t, where t is the hopping constant. The calculated spectral functions, density of states (DOS) and momentum distribution are compared with results of Monte Carlo simulations. A satisfactory agreement was found for U > Uc and for temperatures, at which magnetic ordering and spin correlations are suppressed. For U < Uc and lower temperatures the theory describes qualitatively correctly the positions and widths of spectral continua, variations of spectral shapes and occupation numbers with changing wave vector and repulsion. The locations of spectral maxima turn out to be close to the positions of δ-function peaks in the Hubbard-I approximation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献