Effect of rotational slip on the physical parameter in a micropolar fluid flow past a stretching sheet

Author:

Khan Raja Mehmood1,Ashraf Waqas1,El-Zahar Essam R.23,Sohail Muhammad1,Algelany A. M.24,Thounthong Phatiphat5

Affiliation:

1. Department of Applied Mathematics and Statistics, Institute of Space Technology Islamabad 44000, Pakistan

2. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia

3. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

4. Department of Mathematics, Faculty of Sciences, Fayoum University, Fayoum, Egypt

5. Renewable Energy Research Centre, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Bangsue, Bangkok 10800, Thailand

Abstract

Micropolar fluid flow studied in this paper is influenced by microstructural slip. The flow is directed by a scheme of Partial Differential Equalities. These Partial Differential Equalities are then converted to nonlinear set of Ordinary Differential Equalities via boundary layer conversions. MATLAB bvp4c built in code is taken into account to resolve the leading set of ODEs, along with the initial-boundary settings. Hydro dynamical and thermal boundary layer outlines are considered and deliberated and the results are confirmed by linking with available literature in the classical case. Microstructural slip effects are shown on the Nusselt number and skin-friction coefficient. This model can better predict the effects and characteristics of rotational slip. Specifically, it is predicted from the tabular and graphical results that the rotational slip affects the boundary layer thickness when second-order translational slip disappears. It is important to mention that augmenting the standards of Prandtl number and radiation constraint declines the fluid temperature in the nonappearance and existence of microstructural slip. Moreover, increasing the values of magnetic parameter enhances the fluid temperature in presence as well as in absence of microstructural slip.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3