PERTURBATION THEORY FOR THE ALFVÉN WAVE

Author:

YOSHIDA Z.1,MAHAJAN S.M.2

Affiliation:

1. Faculty of Engineering, University of Tokyo, Hongo, Tokyo 113, Japan

2. Institute for Fusion Studies, University of Texas, Austin, Texas 78759, U.S.A.

Abstract

The Alfvén wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfvén wave propagates along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k||) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfvén wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfvén resonance (ω−cAk||=0; cA is the phase velocity of the Alfvén wave) constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfvén wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena. The first category of perturbations consists of nonideal effects such as the finite conductivity, kinetic effects arising from the finite electron inertia, and finite gyroradius. These effects add singular perturbations to the mode equation, and modify the spectrum dramatically. These modification, viz. the conversion of the continuous to the point spectrum, can lead to interesting physical phenomenon. A case in point is that of an electron beam propagating in a plasma which Cherenkov emits a left-hand circularly polarized Alfvén wave. The helicity of the ambient magnetic field imparts a frequency shift to the eigenmodes changing the critical velocity for Cherenkov emission. It, then, becomes possible for a sub-Alfvénic electron beam to excite a nonsingular Alfvén wave corresponding to a point spectrum. The second category comprises of geometric perturbations associated with higher dimensional inhomogeneity of the ambient field. Forbidden bands occur when a periodic modulation is applied. In a chaotic magnetic field, the weak localization of the wave occurs, resulting in a point spectrum.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3