Affiliation:
1. Department of Mathematics, School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
Abstract
The first-return time (FRT) is an effective measurement of random walks. Presently, it has attracted considerable attention with a focus on its scalings with regard to network size. In this paper, we propose a family of generalized and weighted transfractal networks and obtain the scalings of the FRT for a prescribed initial hub node. By employing the self-similarity of our networks, we calculate the first and second moments of FRT by the probability generating function and obtain the scalings of the mean and variance of FRT with regard to network size. For a large network, the mean FRT scales with the network size at the sublinear rate. Further, the efficiency of random walks relates strongly with the weight factor. The smaller the weight, the better the efficiency bears. Finally, we show that the variance of FRT decreases with more number of initial nodes, implying that our method is more effective for large-scale network size and the estimation of the mean FRT is more reliable.
Funder
National Natural Science Foundation of China
China Scholarship Council
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献