TRIONS IN COUPLED QUANTUM WELLS AND WIGNER CRYSTALLIZATION

Author:

BERMAN OLEG L.12,YA. KEZERASHVILI ROMAN12,TSIKLAURI SHALVA M.3

Affiliation:

1. Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY 11201, USA

2. The Graduate School and University Center, The City University of New York, New York, NY 10016, USA

3. Science Department, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA

Abstract

We consider a restricted three-body problem, where two interacted particles are located in a two-dimensional (2D) plane and interact with the third one located in the parallel spatially separated plane. The system of such type can be formed in the semiconductor coupled quantum wells, where the electrons (holes) and direct excitons spatially separated in different parallel neighboring quantum wells are sufficiently close to interact and form negative X- or positive X+ indirect trions. It is shown that at large interwell separations, when the interwell separation is much greater than the exciton Bohr radius, this problem can be solved analytically using the cluster approach. Analytical results for the energy spectrum and the wavefunctions of the spatially indirect trion are obtained, their dependencies on the interwell separations is analyzed and a conditional probability distribution is calculated. The formation of 2D Wigner crystal of trions at the low densities is predicted. It is shown that the critical density of the formation of the trion Wigner crystal is sufficiently greater than the critical density of the electron Wigner crystal in the same material.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3