Semi-analytical solution of nanofluid flow with convective and radiative heat transfer

Author:

Razavi Seyed Esmail1,Adibi Tohid2,Ahmed Shams Forruque3ORCID,Saha Suvash C.4

Affiliation:

1. School of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. School of Mechanical Engineering, University of Bonab, Bonab, Iran

3. Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh

4. School of Mechanical and Mechatronic Engineering, University of Technology Sydney Ultimo, NSW 2007, Australia

Abstract

The application of nanofluids has exploded in recent decades to improve the local number, mean Nusselt number, and rate of heat transfer. However, boundary layer equations of nanofluid across a flat plate with radiation have not been studied, and therefore this paper studies them mathematically for the first time. For water-based copper and aluminum oxide nanofluids, a similarity solution is presented in this study, and the subsequent system of the ordinary differential equation (ODE) is numerically solved by the Runge–Kutta method in MATLAB. Two different hydraulic boundary conditions are used in the simulations. In the first, the flow across a moving plate and the direction of the flow are analyzed, while in the second, the flow over a nonlinearly moving plate in a still fluid is investigated. The nanoparticle’s boundary layer thickness is found less than the thermal and hydraulics boundary layers. The local Nusselt number and friction factor of both the nanofluids are calculated and compared with the base fluid. The results demonstrate that the friction coefficient is high and the Nusselt number is low for nanoparticles with a high volume fraction. It also revealed that the friction factor for water–aluminum oxide is 16% greater than that for the water–CuO whereas the local Nusselt number for water–aluminum oxide is only 5% more than that for the water–CuO.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3