Band gap engineering by lanthanide doping in the photocatalyst LaOF: First-principles study

Author:

Long Jin-Ping1,Wan Zhou1,Yan Xin-Guo1,Huang Wei-Qing1,Huang Gui-Fang1,Peng Ping2

Affiliation:

1. Department of Applied Physics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, P. R. China

2. School of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China

Abstract

Recent experiment [Xie et al., Catal. Commun., 27, 21 (2012)] reported that LaOF is an active catalyst for water reduction: the catalytic activity per surface area of LaOF is about ten times higher than that of anatase TiO 2. First-principles density functional theory (DFT) calculations have been performed on Ln-doped LaOF (Ln = Ce , Pr , Nd and Pm ) to evaluate the effect of lanthanide doping on the electronic and optical properties. It is found that the lowest conduction band (CB) edge potential of LaOF is less than zero (versus normal hydrogen electrode (NHE)), confirming it has enough driving force for photocatalytic water splitting. The band gap of LaOF could be reduced significantly by lanthanide doping. Electronic structure analysis shows that the impurity states appear deep inside the band gap of LaOF, which is in favor of the separation center of photogenerated carriers due to large effective mass differences between electron and hole. Moreover, doping both Pm and Nd into LaOF is an effective approach to extend the optical absorption edge to the visible light. These findings suggest that LaOF doped with lanthanide element is a promising candidate for the photocatalytic hydrogen generation from water and pollutant decomposition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3