Physical mechanisms in impacts of interaction factors on totally asymmetric simple exclusion processes

Author:

Wang Yu-Qing1ORCID,Wang Jia-Wei2,Wang Bing-Hong3

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, P. R. China

2. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China

3. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, P. R. China

Abstract

Exclusion processes are hot study issues in statistical physics and corresponding complex systems. Among fruitful exclusion processes, totally asymmetric simple exclusion process (namely, TASEP) attracts much attention due to its insight physical mechanisms in understanding such nonequilibrium dynamical processes. However, interactions among isolated TASEP are the core of controlling the dynamics of multiple TASEPs that are composed of a certain amount of isolated one-dimensional TASEP. Different from previous researches, the interaction factor is focused on the critical characteristic parameter used to depict the interaction intensity of these components of TASEPs. In this paper, a much weaker constraint condition [Formula: see text] is derived as the analytical expression of interaction factor. Self-propelled particles in the subsystem [Formula: see text] of multiple TASEPs can perform hopping forward at [Formula: see text], moving into the target site of the (i − 1)th TASEP channel at [Formula: see text] or updating into the (i + 1)th TASEP channel at [Formula: see text]. The comparison of this proposed interaction factor and other previous factors is performed by investigating the computational efficiency of obtaining analytical solutions and simulation ones of order parameters of the proposed TASEP system. Obtained exact solutions are observed to match well with Monte Carlo simulations. This research attempts to have a more comprehensive interpretation of physical mechanisms in the impact of interaction factors on TASEPs, especially corresponding to stochastic dynamics of self-propelled particles in such complex statistical dynamical systems.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for Central Universities

Curriculum planning and design research project

Teaching Quality and Teaching Reform Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3