Mortal random walks on a family of treelike regular fractals with a deep trap

Author:

Wu Zikai1ORCID,Xu Guangyao1

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

Due to the ubiquitous occurrence of evanescence in many physical, chemical and biological scenarios, mortal random walks that incorporate evanescence explicitly have drawn more and more attention. It has been a hot topic to study mortal random walks on distinct network models. In this paper, we study mortal random walks on T fractal and a family of treelike regular fractals with a trap located at central node (i.e., innermost node). First, with self-similar setting composed of T fractal, initial position of the walker and location of trap, the total trapping probability of the mortal walker reduces to a function of walker’s single-step survival parameter [Formula: see text]. In more detail, the total trapping probability is expressed by the [Formula: see text]th iteration of map (scaling function) of [Formula: see text]. Based on the map, the analytical expression of total trapping probability’s dominant behavior, the mean time to trapping (MFPT) and temporal factor are obtained, which are related to random walk dimension. Last, we extend the analysis to a family of treelike regular fractals. On them, the total trapping probability is still expressed as the [Formula: see text]th iteration of the map scaling [Formula: see text]. Accordingly, dominant behavior of total trapping probability, MFPT and temporal factor are determined analytically. Both analytical results obtained on T fractal and more general treelike regular fractals show that the mean time to trapping and desired random walk dimension can be obtained by tuning the survival probability parameter [Formula: see text]. In summary, the work advances the understanding of mortal random walks on more general deterministic networks.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3