Affiliation:
1. College of Mathematics and Statistics, Northwest Normal University, Gansu, Lanzhou 730070, P. R. China
Abstract
In this paper, we study the dynamical processes of quantum coherence and correlations for two central qubits system coupled with a transverse Ising spin chain. Suppose the initial state of quantum system is the Werner state and the initial state of environment is the ground state of spin chain, and the corresponding time evolution operator, decoherence factor and reduced density matrix are given. We deduce the analytical expressions of evolution of quantum coherence, entanglement and quantum discord. We find that when the spin chain undergoes quantum phase transition (QPT), the entanglement vanished at time [Formula: see text], and the coherence and discord vanished when the decoherence factor decayed to zero. Besides, we also find that the environmental scale N, coupling strength g and parameter P of Werner state do not change the evolution rules of quantum correlation, but accelerate their decay rate with these parameters’ increase.
Funder
National Natural Science Foundation of China
Higher Education Innovation Fund of Gansu Provincial Department of Education
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献