Nonlinear localized modes in a higher-order anisotropic ferromagnetic nanowire with octupole–dipole interaction

Author:

Pavithra T.1ORCID,Kavitha L.1ORCID,Mani Awadesh2ORCID

Affiliation:

1. Department of Physics, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India

2. Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India

Abstract

Increasing demand for advanced technologies that depends on magnetic phenomena, understanding and controlling the behavior of discrete breather in ferromagnetic nanowires are crucial for enhancing the efficiency and performance of such devices. The presence of octupole–dipole interactions signifies a unique aspect that could potentially influence the stability and localization of breather excitations. Hence, we adopted a multifaceted approach to investigate the Heisenberg anisotropic ferromagnetic nanowire discrete model with the following interactions: bilinear, octupole–dipole, anisotropy and its higher-order terms. The dynamics is governed by a discrete nonlinear Schrödinger equation (DNLS) arrived with the aid of Holstein–Primakoff transformation. This transformation was facilitated by utilizing the Glauber coherent representation of the boson operators. Subsequently, the dynamical equation is incorporated to the Modulational Instability (MI) analysis which is a systematical gateway to explore the breather excitation in the region of instability influenced by the octupole–dipole interaction coupling parameter. Then, we pictorially demonstrated that the octupole–dipole interaction plays a pivotal role in promoting the localization of discrete breather on the surface of the spin lattice sites in the discrete ferromagnetic nanowire. The energy density distribution also implies that the increase in octupole–dipole interaction results in the highly dense breather localization. The result shows that the increment in the octupole–dipole interaction parameter increases the amplitude of the localized breathers. These discrete breathers could hold immense promise for applications in magnetic storage and Spintronic devices, where maintaining stable localized modes is crucial for the device functionality. Our novelty lies in being pioneers in the exploration of a fully discrete model that encompasses higher-order interactions, such as the octupole–dipole interaction. We already have confirmed the existence of instability region on the discrete spin lattice by incorporating the octupole–dipole interaction [T. Pavithra, L. Kavitha, Prabhu and A. Mani, Modulational instability analysis in an isotropic ferromagnetic nanowire with higher order octopole-dipole interaction, in Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022 (Springer, 2022), p. 1209], we attempting to explore the generation of discrete breathers in a discrete anisotropic ferromagnetic nanowire. This effectively bridges the gap between theoretical understanding and practical implications, paving the way for innovative advancements in magnetic technology.

Funder

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3