THEORY OF THIRD SOUND AND STABILITY OF THIN 3He–4He SUPERFLUID FILMS

Author:

MILLER M. D.12,KROTSCHECK E.1

Affiliation:

1. Institut für Theoretische Physik, Johannes-Kepler-Universität, A-4040 Linz, Austria

2. Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814, USA

Abstract

In this paper, we summarize the results of recent studies of third sound in thin, superfluid 3 He -4 He mixture films and the relation of the third sound spectrum to the question of the films' thermodynamic stability. We have considered films on several representative substrates: Nuclepore, glass, Li and Na . Our approach utilizes the variational, hypernetted chain/Euler-Lagrange (HNC–EL) theory as applied to inhomogeneous boson systems to calculate chemical potentials for both the 4 He superfluid film and the physisorbed 3 He . Numerical density derivatives of the chemical potentials lead to the sought-after third sound speeds. On all substrates, the third sound speeds show a series of oscillations as a function of film coverage that is driven by the layered structure of the 4 He film. We find that the effect on the third sound response of adding a small amount of 3 He to the 4 He film can depend sensitively on the particular 4 He film coverage. The third sound speed can either increase or decrease. In fact, in some regimes, the added 3 He destabilizes the film and can drive "layering transitions" leading to quite complicated geometric structures of the film in which the outermost layer consists of phase–separated regimes of 3 He and 4 He . Finally, we examine the range of applicability of the usual film–averaged hydrodynamic description. We find that at least up to film thicknesses of six liquid layers, there is no regime in which this hydrodynamic description is applicable.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3