Affiliation:
1. Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2. Department of Physics, Columbia University, New York, NY 10027, USA
Abstract
Skyrmions are topological solitons that emerge in many physical contexts. In magnetism, they appear as textures of the spin-density field stabilized by different competing interactions and characterized by a topological charge that counts the number of times the order parameter wraps the sphere. They behave as classical objects when the spin texture varies slowly on the scale of the microscopic lattice of the magnet. However, the fast development of experimental tools to create and stabilize skyrmions in thin magnetic films has led to a rich variety of textures, sometimes of atomistic sizes. In this paper, we discuss, in a pedagogical manner, how to introduce quantum interference in the translational dynamics of skyrmion textures, starting from the micromagnetic equations of motion for a classical soliton. We study how the nontrivial topology of the spin texture manifests in the semiclassical regime, when the microscopic lattice potential is treated quantum-mechanically, but the external driving forces are taken as smooth classical perturbations. We highlight close relations to the fields of noncommutative quantum mechanics, Chern–Simons theories, and the quantum Hall effect.
Funder
US Department of Energy, Office of Basic Energy Sciences
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献