Multi-objective optimized design of two-dimensional multi-phase phononic crystals with materials self-selection

Author:

Nie Yangwen1,Wu Jianhua2,Fan Hao2

Affiliation:

1. Experimental Teaching Demonstration Center of Mechanical Basis, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China

2. Key Laboratory of Highway Construction Technology and Equipment of Ministry of Education, School of Construction Machinery, Chang’an University, Xi’an 710064,P. R. China

Abstract

In this paper, the multi-objective optimization problem (MOOP) of selecting suitable materials from four materials for phononic crystals layouts is investigated based on an optimization method combined nondominated sorting-based genetic algorithm II (NSGA-II) and finite element method (FEM). Driven by different optimization objectives, the changes in the optimized structure compared to the seed structure are the change of the bandgap mechanism from a local resonance mechanism to a Bragg scattering mechanism, the change of the included materials from four to three, and the significant change in the location and extent of the pores and other materials, respectively. The obtained nondominated Pareto solution of MOOP can balance the bandgap and the structural mass, which provides the decision-maker trade-off to select the appropriate optimized solution. Compared with the single-objective optimization problem (SOOP), the MOOP not only obtains a nondominated solution close to the result of SOOP, but also obtains other nondominated solutions of MOOP, which proves the effectiveness of the optimization algorithm in this paper. The design method in this paper can be easily extended to select suitable materials from a wider variety of materials for bandgap optimization design of PnCs, which has very promising applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3