Effects of optical phonon interaction on dynamical valley polarization in graphene

Author:

Fahandezh Saadi M.1,Shirkani H.2,Golshan M. M.1

Affiliation:

1. Physics Department, College of Sciences, Shiraz University, Shiraz 71454, Iran

2. Physics Department, Persian Gulf University, Bushehr 75169, Iran

Abstract

The present report is concerned with the dynamical behavior of [Formula: see text]-electronic valley states, under the interaction with transverse zone-boundary optical phonons, in graphene. It is assumed that the phonons are thermal and obey the Bose–Einstein distribution, while the [Formula: see text]-electrons are initially prepared in an experimentally realizable particular valley state. In our study, we take the view that such a mixture is completely described by a time-dependent density operator which is then determined, to the second-order of perturbation, from the governing Schrödinger equation. Employing the density operator so calculated, an analytical expression for the valley polarization, as a function of time, phonon frequency and temperature, is obtained. The results, accompanying with illustrative figures, reveal that the [Formula: see text]-electrons, through the elastic exchange of energy with phonons, change the valley states periodically with characteristics that strongly depend upon the temperature. It is in particular shown that as the temperature is raised, the time-averaged valley polarization approaches zero, as expected. Our calculations also show that the amplitude of valley oscillations is solely determined by the temperature and phonon frequency: an increase in the temperature enlarges the amplitudes in contrast to the phonon frequency which does the reverse. Along these lines, moreover, we demonstrate that the frequency of valley oscillations is determined by the electronic momentum deviation from the valley states, along with the phonon frequency.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3